MARTINEZ, CALWAY: EFFICIENTLY INCREASING MAP DENSITY IN VISUAL SLAM 1 Efficiently Increasing Map Density in Visual SLAM Using Planar Features with Adaptive Measurements

نویسندگان

  • José Martínez-Carranza
  • Andrew Calway
چکیده

Point based visual SLAM suffers from a trade off between map density and computational efficiency. With too few mapped points, tracking range is restricted and resistance to occlusion is reduced, whilst expanding the map to give dense representation significantly increases computation. We address this by introducing higher order structure into the map using planar features. The parameterisation of structure allows frame by frame adaptation of measurements according to visibility criteria, increasing the map density without increasing computational load. This facilitates robust camera tracking over wide changes in viewpoint at significantly reduced computational cost. Results of real-time experiments with a hand-held camera demonstrate the effectiveness of the approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficiently Increasing Map Density in Visual SLAM Using Planar Features with Adaptive Measurement

The visual simultaneous localisation and mapping (SLAM) systems now in widespread use are based on localised point features [2, 4, 5]. Although effective in many respects, the approach has limitations when considering the density and efficiency of map representation. With a dense population of features, camera tracking can be robust, able to withstand significant occlusion and large changes in ...

متن کامل

Unifying Planar and Point Mapping in Monocular SLAM

Planar features in filter-based Visual SLAM systems require an initialisation stage that delays their use within the estimation. In this stage, surface and pose are initialised either by using an already generated map of point features [2, 3] or by using visual clues from frames [4]. This delay is unsatisfactory specially in scenarios where the camera moves rapidly such that visual features are...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

Planar Features for Visual SLAM

Among the recent trends in real-time visual SLAM, there has been a move towards the construction of structure-rich maps. By using landmarks more descriptive than point features, such as line or surface segments, larger parts of the scene can be represented in a compact form. This minimises redundancy and might allow applications such as object detection and path planning. In this paper, we prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009